CORE MATHEMATICS (C) UNIT 1 TEST PAPER 2

- 1. Write down the exact values of
 - (i) $16^{\frac{3}{4}}$, (ii) $\left(\frac{2}{3}\right)^{-2}$, (iii) $4^{-\frac{1}{2}}$.
- 2. (i) Find the set of real values of k for which the equation $x^2 kx + k = 0$ has no real roots. [4]
 - (ii) State the number of real roots of the equation $x^2 4x + 4 = 0$. [2]
- 3. Solve the simultaneous equations xy = 1, 3x + 2y = 5. [6]
- 4. The line l₁ passes through (-2, 5) and is parallel to the line 4x + 3y = 0.
 The line l₂ also passes through (-2, 5) and is perpendicular to the line 4x + 3y = 0.

 Find equations of l₁ and l₂, expressing each answer in the form ax + by + c = 0 where a, b, c are integers.
- 5. Two quantities P and t are related by the equation $P = \frac{k}{\sqrt{t}}$, where k is a positive constant.
 - (i) Find, in terms of k, the rate of change of P with t when $t = k^2$. [4]

Q also varies with t, such that $Q = \frac{\sqrt{t} + \sqrt{k}}{6}$.

- (ii) Show that when P = Q, $t + \sqrt{k}\sqrt{t} 6k = 0$. [3]
- (iii) By substituting $t = x^2$, or otherwise, find, in terms of k, the value of t for which P = Q. [4]
- 6. In this question, $f(x) \equiv x^2 6x + 11$.
 - (i) Express f(x) in the form $(x-p)^2 + q$ and hence find the minimum value of f(x). [3]
 - (ii) If the line of symmetry of the graph of y = f(x) has equation x = a, state the value of a. [2]
 - (iii) With this value of a, the graph of y = f(x) is translated a units in the negative x-direction. Find the equation of the resulting graph, giving your answer in a form without brackets. [3]
 - (iv) Sketch these two graphs on the same diagram and find the coordinates of the point where they intersect. [5]

[3]

CORE MATHEMATICS 1 (C) TEST PAPER 2 Page 2

7. The equation of a curve is $x^2y = x - 6$.

The normal to the curve at the point where x = -2 meets the x-axis at P.

(i) Find the coordinates of P.

[9]

(ii) Find the coordinates of the point on the curve at which the gradient is 0.

[4]

- 8. The points A and B have coordinates (-2, 4) and (6, -2) respectively.
 - (i) Find the coordinates of the mid-point of AB.

[2]

(ii) Find the length of AB.

[2]

(iii) Find the equation of the circle which has AB as a diameter, giving your answer in the form

$$x^2 + y^2 + ax + by + c = 0$$
 where a, b and c are integers.

[3]

(iv) Find an equation of the tangent at A to the circle.

[4]

The point P lies on the circle, and the straight line AP has gradient 2.

(v) State the gradient of BP.

[2]

PMT

CORE MATHS 1 (C) TEST PAPER 2 : ANSWERS AND MARK SCHEME

1. (i)
$$2^3 = 8$$

(ii)
$$(3/2)^2 = 9/4$$

(ii)
$$(3/2)^2 = 9/4$$
 (iii) $1/\sqrt{4} = 1/2$

3

2. (i) No real roots if
$$k^2 - 4k < 0$$
 $k(k-4) < 0$

B1 M1 A1 A1

(ii) Here
$$k = 4$$
, so there is one (repeated) real root

6

6

7

3.
$$y = (5 - 3x)/2$$

$$x(5-3x)=2$$

$$x(5-3x) = 2 3x^2 - 5x + 2 = 0$$

B1 M1 A1

$$(3x-2)(x-1)=0$$

$$(3x-2)(x-1) = 0$$
 $x = 2/3, y = 3/2 \text{ or } x = 1, y = 1$

4. Gradient of
$$l_1 = -4/3$$
, so l_1 is $y - 5 = -4/3$ $(x + 2)$

$$4x + 3y - 7 = 0$$

M1 A1 A1

Gradient of
$$l_2 = \frac{3}{4}$$
, so l_2 is $y - 5 = \frac{3}{4}(x + 2)$

$$3x - 4y + 26 = 0$$

5. (i)
$$P = kt^{-1/2}$$

$$dP/dt = -\frac{1}{2}kt^{-3/2}$$

(i)
$$P = kt^{-1/2}$$
 $dP/dt = -1/2 kt^{-3/2}$ When $t = k^2$, $dP/dt = -1/(2k^2)$

(ii) When
$$P = Q$$
, $6k = t + \sqrt{kt}$

$$t + \sqrt{k}\sqrt{t} - 6k = 0$$

(iii)
$$(\sqrt{t} + 3\sqrt{k})(\sqrt{t} - 2\sqrt{k}) = 0$$
 $\sqrt{t} > 0$ so $\sqrt{t} = 2\sqrt{k}$ $t = 4k$

$$\sqrt{t} > 0$$
 so $\sqrt{t} = 2\sqrt{k}$

$$t = 4k$$

6. (i)
$$f(x) = (x-3)^2 + 2$$

Minimum is
$$f(x) = 2$$

(ii) Line of symmetry is
$$x = 3$$
, so $a = 3$

(iii) New graph is
$$f(x + 3)$$
, so it is $y = x^2 + 2$

M1 A1 A1

Intersect where
$$x^2 - 6x + 11 = x^2 + 2$$
 $x = 3/2$ (3/2, 17/4)

13

7. (i)
$$y = \frac{1}{x} - \frac{6}{x^2}$$

7. (i)
$$y = \frac{1}{x} - \frac{6}{x^2}$$
 $\frac{dy}{dx} = -\frac{1}{x^2} + \frac{12}{x^3} = -\frac{7}{4}$ when $x = -2$

$$y = -2$$
, so normal is $y + 2 = 4/7 (x + 2)$

When
$$y = 0$$
, $x = 3/2$

(ii) When
$$-\frac{1}{x^2} + \frac{12}{x^3} = 0$$
, $x = 12$ Point is (12, 1/24)

(ii)
$$AB^2 = 64 + 36$$

$$AB = 10$$

(iii)
$$(x-2)^2 + (y-1)^2 = 25$$

$$x^2 + y^2 - 4x - 2y - 20 = 0$$

(iv) Gradient of radius to
$$A = -3/4$$
, so gradient of tangent = $4/3$
Tangent is $y - 4 = 4/3$ (x + 2)

(v) Angle
$$ABP = 90^{\circ}$$
 (angle in semicircle), so gradient of $BP = -1/2$

13